SOLIDES ET VOLUMES

I) Solides

1. Prisme droit

<u>Définition</u>: Un prisme droit est

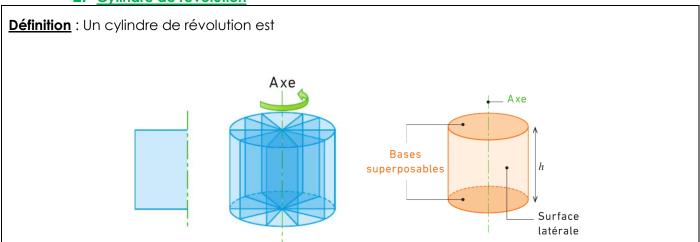
Remarque : le parallélépipède rectangle (ou pavé droit) et le cube sont des prismes droits particuliers.

Hauteur

Hauteur

Face

latérale


Latérale

Base

Arête

Base

2. Cylindre de révolution

Propriété: Les bases d'un cylindre de révolution sont des

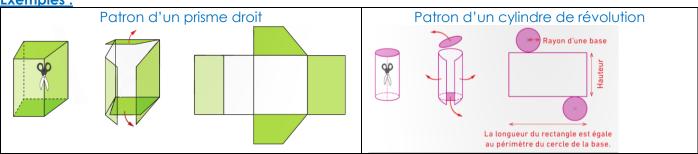
et la surface latérale est

II) <u>Perspective, patron</u>

1. Perspective cavalière

Pour représenter un solide dans le plan, on utilise la **perspective cavalière**.

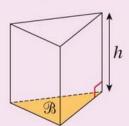
En perspective cavalière:


- Les figures (faces) face à l'observateur sont dessinées en vraie grandeur, sans déformation
- Les droites parallèles en réalité le sont sur le dessin
- Les arêtes cachées sont représentées en pointillés
- Les arêtes obliques sont représentées par des segments n'ayant pas la même longueur que dans la réalité.

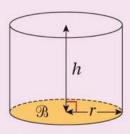
2. Patrons

<u>Définition</u>: le patron d'un solide est

<u>Propriété</u> : Il existe plusieurs patrons d'un même solide.

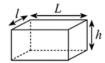

<u>Propriété</u>: Le périmètre du disque formant la base d'un cylindre de révolution est égal à la longueur du côté du rectangle formant la surface latérale du cylindre.

$$P = 2 \times \pi \times R$$


III) Volumes

1. Prisme droit et cylindre de révolution

PROPRIÉTÉ Le volume \mathcal{V} d'un prisme droit ou d'un cylindre est : $\mathcal{V} = \mathfrak{R} \times h$.


Pour le cylindre, la base est un disque de rayon r, donc $\mathcal{B} = \pi \times r^2$, d'où $\mathcal{V} = \pi \times r^2 \times h$.

2. <u>Cas particuliers de prismes droits : le parallélépipède rectangle et le cube</u>

Propriétés :

• Le volume d'un parallélépipède rectangle est $V = h \times L \times l$

• Le volume d'un **cube** est $V=c^3$

