Activité 1 : Mise en route

1. Soient les deux programmes de calcul suivants :

PROGRAMME A	PROGRAMME B
Choisir un nombreLe multiplier par 3Ajouter 5 au résultat	×5 - AD

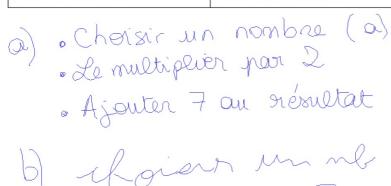
a. Appliquer ces programmes de calcul aux nombres 4, – 3 et $\frac{2}{3}$

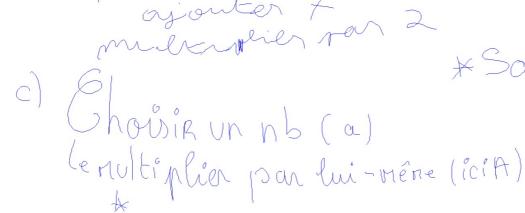
Nombre	Programme A	Programme B
4	4x3+5-17	4×5-10=10
-3	-3 x3+5 =-9+5=-4	$-3 \times 5 - 10 = -25$
2	7 - 5 - 4	
3	$(3\times3+5=$	3 2 x 5 - 10 = - 20
		3^{1}

Page 1

Activité 1 : Mise en route

1. Soient les deux programmes de calcul suivants :

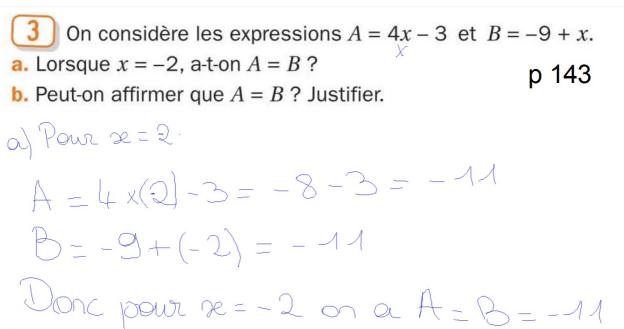

PROGRAMME A	PROGRAMME B
 Choisir un nombre	12 ×5 5.22 - 10


- **a.** Appliquer ces programmes de calcul aux nombres 4, 3 et $\frac{2}{3}$
- **b.** Déterminer les expressions littérales correspondant à chacun des programmes ci-dessus

Soit re le nombre chaisi:

Programme A : Asse x 3 + 5 = 3 x + 5 Programme B : B = 20x5 - 10 = 5 x - 10 2. Quel programme de calcul peut-on associer à chacune des expressions suivantes :

a. $2 \times a + 7$	b. $2 \times (a+7)$	c. (a²)- 15
d. $a^2 + a = 7$	e. $3a^2 - 2a + 4$	Daxa


Page 3

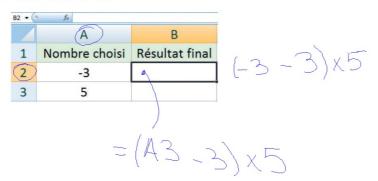
2. Quel programme de calcul peut-on associer à chacune des expressions suivantes :

expressions servain		
a. $2 \times a + 7$	b. $2 \times (a + 7)$	c. $a^2 - 15$
d. $a^2 + a - 7$	e. $3a^2 - 2a + 4$	

DEVOIRS: 3 p 143

+ 17 et 18 p 146 (tableur)

b) Pour x = 0: $A = 4 \times 0 - 3 = -3$ B = -9 + 0 = -9Donc on n'a par tout le temps A = B = -9 + 0 = -9


Page 5

17 TICE Programme de calcul

p 146

On considère le programme de calcul ci-dessous.

- Choisir un nombre.
- Soustraire 3 au nombre choisi.
- Multiplier cette différence par 5.
- Indiquer quelle formule il faut saisir dans la cellule B2 de la feuille de calcul suivante pour calculer le résultat final.

18 TICE Programme de calcul

Voici une feuille de calcul:

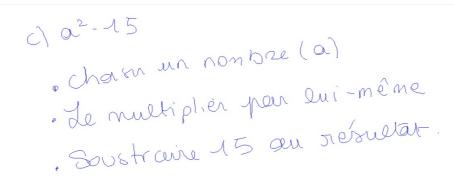
p 146

1	А	В
1	Nombre choisi	Résultat final
2	-3	=A2*(A2-5)+6

Écrire un programme de calcul qui correspond à la formule saisie dans la cellule B2.

Page 7

2. Quel programme de calcul peut-on associer à chacune des expressions suivantes:

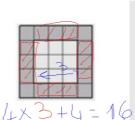

expressions servatives.				
a. $2 \times a + 7$	b. $2 \times (a + 7)$	c. $a^2 - 15$		
d. $a^2 + a - 7$	e. $3a^2 - 2a + 4$			

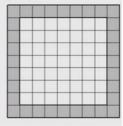
« Choisir un nombre (a) . Le multiplier par 2

Ajouter 7 au nésultat
b) « Cheisir un namba

DEVOIRS: 3 p 143

+ 17 et 18 p 146 (tableur)


Page 9


Activité 2 : Les carrés bordés

Pierre joue avec des carreaux de mosaïque. Il dispose ses carreaux gris autour de différents carrés formés de carreaux blancs. En voici quatre.

Carré Taille 1

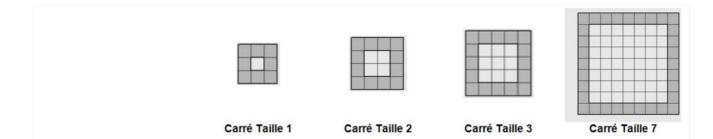
Carré Taille 2

Carré Taille 3

Carré Taille 7

Il voudrait trouver une formule lui permettant de déterminer le nombre de carreaux gris en fonction de la taille du carré blanc central.

1. Combien y a-t-il de carreaux gris entourant un carré blanc :

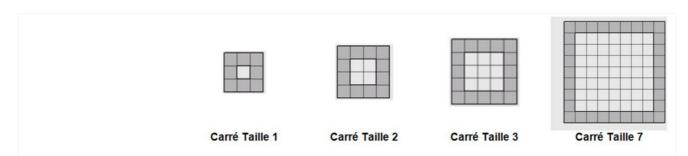

a. de taille 1 ?

b. de taille 2 ?

c. de taille 3?

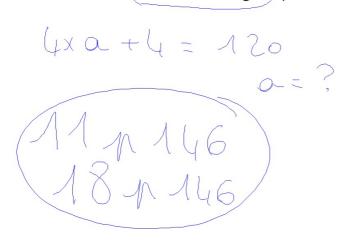
Formule D. Aroite paucha
Taulle 1: 1x2 côtés + 3 x 2 côtés - 8
Formule D.

Taelle 2: 4x2+4 angles=12



2. Donner une formule permettant de calculer le nombre de carreaux gris entourant un carré blanc de n'importe quelle taille.

Soit a la taille du cané blanc: 4xa+4


Toille 7. 4x7+4=32 V.

Page 11

0.

3. On a trouvé 120 carreaux gris, quelle était la taille du carré blanc?

1 La lettre n désigne un entier.

p 146

Comment s'écrit :

- a. le double de n? $2 \times 0 = 2 \text{ h}$. la moitié de n? $0 \cdot 2 = \frac{n}{2}$
- c. l'opposé de n? $\stackrel{\frown}{=}$ d. le tiers de n? $\stackrel{\frown}{=}$ $\stackrel{\frown}$
- g. le nombre entier qui suit $n ? \cap + 1$
- **h.** le nombre entier qui précède n? \cap \neg
- i. la différence de n et de 3 ? n 3
- j. la somme de 4 et de la moitié de n? $4+\frac{9}{2}$ k. le produit de n par la somme de n et de 4?

nx (n+4)

Page 13

18 TICE Programme de calcul

p 146

Voici une feuille de calcul:

	A	В
1	Nombre choisi	Résultat final
2	(-3)	=A2*(A2-5)+6

Écrire un programme de calcul qui correspond à la formule saisie dans la cellule B2.

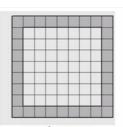
· Choisir un nombre

A 2

*: X

· Soustraire 5

· Multiplier le résultat par le nombre choisi


an départ

·Ajonter 6.

Carré Taille 1

Carré Taille 2

Carré Taille 3

Carré Taille 7

3. On a trouvé 120 carreaux gris, quelle était la taille du carré blanc?

a=29, le canébanc était de taille 29.

Page 15

CALCUL LITTERAL

Expression littérale (rappel)

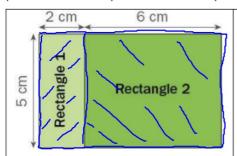
<u>Définition</u>: Une expression littérale est une expression contenant will au yoursi euro lettres des <u>variables</u> Ces variables désignent des nombres qui pouvent vorier.

Convention: Dans une expression littérale, on peut supprimer le signe x:

- Entre un nombre et une lettre
- $2 \times x = 2 \infty$

Entre deux lettres

 $L \times l =$


Avant une parenthèse

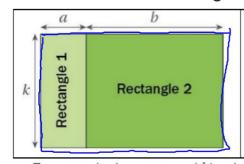
- Entre deux séries de parenthèses
- $2 \times (x+1) = 2 \left(\begin{array}{c} x + 1 \end{array} \right)$ $(x+3) \times (2-x) = \left(\begin{array}{c} x + 3 \end{array} \right) \left(\begin{array}{c} 2 \end{array} \right)$

Remarque: a désigne un nombre a²=axa et a³=axaxa

Activité 3 : Distributivité

1. a. Écrire l'aire du rectangle ci-dessous à l'aide d'une expression avec parenthèses, puis d'une expression sans parenthèses.

Expression avec parenthèses:


Expression sans parenthèses :

$$5 \times 2 + 5 \times 6 = 10 + 30 = 40$$

Quelle égalité peut-on écrire ?

$$5x(2+6) = 5x2+5x6$$

b. On considère le rectangle ci-dessous. Compléter.

Aire du grand rectangle:

$$A = l \times L = 1 \times 1 \times (a+b)$$

Somme des aires des deux petits rectangles :

$$\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2 = \mathcal{A}_1 \times \mathcal{A}_2 + \mathcal{A}_2 \times \mathcal{A}_2 \times \mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A$$

Page 17

c. En conclusion, compléter la propriété suivante.

BILAN 1 : Distributivité de la multiplication par rapport à l'addition :

a, b et k sont des nombres quelconques. On a :

$$k \times (a + b) = k \times 0 + k \times 0$$
Factoriser

k est appelé facteur commun.

$$k \times (a + b) = k \times 0 + k \times (a - b) = k \times (a - b) = k \times (a - b)$$
Factoriser

Factoriser

50) Distance de freinage 📖

CALCULER à l'aide de nombres.

Lorsque le conducteur appuie sur le frein, il faut plusieurs mètres à une voiture pour s'arrêter. La formule $D_f = \frac{v \times v}{20a}$ donne cette distance, en m, 20*a*

appelée distance de freinage où :

- \cdot v est la vitesse, en m/s, de la voiture avant le freinage;
- · a est un coefficient qui dépend de l'état de la route : a = 0.8 sur route sèche, a = 0.6 sur route

(Il pleut.)Martine roule à 72 km/h.

- a. Montrer que sa vitesse est égale (20 m
- b. Martine voit un enfant traverser la route et appuie sur le frein.

Quelle distance parcourt sa voiture avant son arrêt?

p 150

a)
$$72 \, \text{Km/h} = \frac{72 \, \text{Km}}{1 \, \text{h}} = \frac{72 \, \text{km}}{3600 \, \text{s}}$$

= $\frac{20 \, \text{m}}{1 \, \text{s}}$
= $20 \, \text{m/s}$.

- a oute movillée "11 plent" Martine va parrour ir 33 n avant de s'arrieter

Page 19

3. Applications

a. Dans chaque cas, donner une expression sans parenthèses, égale à celle donnée.

$$A = 3(1 + 4x)$$

$$B = (7 \ \widehat{\phi} \ 3x) \times 4$$

$$C = 4x(2+7x)$$

$$D = 2(x - 6)$$

$$E = -5(1 + 2x)$$

$$F = -3x(2x - 4)$$

b. Dans chaque cas, écrire l'expression sous forme de produit.

$$G = 7 \times 3 + 7 \times y$$

$$H = 5 \times 2x + 5 \times 3$$

$$I = 4 \times y + 6 \times 4$$

[3x1+3x4/253+12x

X7+4X300-78+

3. Applications

a. Dans chaque cas, donner une expression sans parenthèses, égale à celle donnée.

$$A = 3(1 + 4x)$$

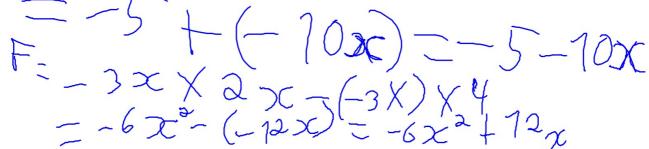
$$B = (7 + 3x) \times 4$$

$$E = -5(1 + 2x)$$

$$C = 4x(2 + 7x)$$

$$D = 2(x \bigcirc 6)$$

$$E = (-5)(1 \oplus 2x)$$


$$F = (-3x)(2x-4)$$

b. Dans chaque cas, écrire l'expression sous forme de produit.

$$G = 7 \times 3 + 7 \times y - 7 \times (3 \oplus y)I = 5 \times 2x + 5 \times 3$$
 $I = 4 \times y - 6 \times 4$

$$I = 4 \times y - 6 \times 4$$

$$E = -5 \times 1 + (-5) \times 2 \times -$$

Page 21

3. Applications

a. Dans chaque cas, donner une expression sans parenthèses, égale à celle donnée.

$$A = 3(1 + 4x)$$

$$B = (7 + 3x) \times 4$$

$$C = 4x(2 + 7x)$$

$$D = 2(x - 6)$$

$$E = -5(1 + 2x)$$

$$F = -3x(2x - 4)$$

b. Dans chaque cas, écrire l'expression sous forme de produit.

$$G = \underline{7} \times 3 \oplus \underline{7} \times y$$

$$H = \underbrace{5 \times 2x}_{} \underbrace{+5 \times 3}_{}$$

$$G = \underline{7} \times 3 \oplus \underline{7} \times y$$
 $H = \underline{5} \times 2x \oplus \underline{5} \times 3$ $I = \underline{4} \times y \oplus 6 \times \underline{4}$

4. Développer ou factoriser?

a. Pour chaque expression, indiquer si c'est une somme ou un produit.

6.			
	/	$\int B = \underline{5}y \oplus 5 \times 3 \lor$	$P C = (7 + 3x) \times 2 \times 2$
S D = 12 - 4y	√	$\mathcal{P}E = -1(4 - 2x + 5y) U$	/ $S = 3x + 8x$
		P H = -2y(x-5)	$\int I = 3y^2 - 5y$

b. Développer tous les produits ci-dessus à l'aide de la formule de distributivité. Pour les sommes, chercher le facteur commun aux deux termes, puis factoriser.

$$A=3 \times h + 3 \times 3 \times = 12 + 3 \times C = 14 + 6 \times$$

$$B = 5 \times (-y+3)$$

$$D = 12 - 4y = 4 \times 304y = 4 \times (3-y)$$

$$E = -1(4-2) \times 2x + 5y = -1 \times 4 - (-1) \times 2x + (-1) \times 5y = -4 + 2x$$

$$E = -1(4-2) \times 5y = -5y$$

Page 23

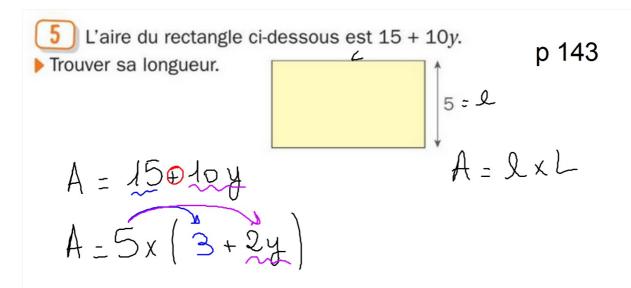
4. Développer ou factoriser?

a. Pour chaque expression, indiquer si c'est une somme ou un produit.

A = 3(4 + x)	$B = 5y + 5 \times 3$	$C = (7 + 3x) \times 2$
D = 12 - 4y	E = -1(4 - 2x + 5y)	$S F = 3\underline{x} + 8\underline{x}$
$Q G = (5x)(3 \oplus x)$	P H = -2y(x-5)	$\int I = 3y^2 - 5y$

b. Développer tous les produits ci-dessus à l'aide de la formule de distributivité. Pour les sommes, chercher le facteur commun aux deux termes, puis factoriser.

$$F = \chi \times (3 + 8) = \chi \times 11 = 11\chi$$


$$G = 5\chi \times 3 + 5\chi \times \chi = 15\chi + 5\chi^2.$$

$$H = -2y \times \chi - (-2y) \times 5 = -2y\chi - 10y$$

$$I = 3y \times y - 5y = y \times (3y - 5).$$

BILAN 2: VOCABULAIRE Qu'est-ce que <u>développer</u> une expression littérale? C'est transformer un produit en somme ou différence. Qu'est-ce que <u>factoriser</u> une expression littérale? C'est transformer une sonme ou une différence en produit. Réduire une expression littérale c'est calcular les expressions que l'on peut calcular. L'usage des parenthèses:

Page 25

CALCUL LITTERAL (suite leçon)

Distributivité: développement et factorisation

Règle des signes

Propriété: x et y désignent des nombres relatifs :

- $(-x) \times y = 0$ $(-x) \times (-x) = -(.0) \times ... = ...$
- $(-x) \times (-y) = +(...) \times ... \times ... = ... \times ... \times ... \times ... \times ... \times ... = ... \times ... = ... \times ...$

2) <u>Distributivité (de la multiplication par rapport à l'addition, la soustraction)</u>

Propriété: k, a et b désignent des nombres relatifs.

- $k(a \oplus b) = k \times 0 + k \times h$
- $k(a \cap b) = k \times \alpha k \times b$

Page 27

19) Dans chaque cas, réduire, si possible, l'expression proposée.

a.
$$5x \times 3$$

c.
$$2 + 4x$$

c.
$$2 + 4x$$

e. $5x \times 2x = 100$
g. $5x^3 + 3x^2$
d. $3x^2 - 8x^2$
f. $4x \times x^2$
h. $9x^2 + x^2$

g.
$$5x^3 + 3x^2$$

$$1. 2x \times 3y$$

d.
$$3x^2 - 8x^2$$

f.
$$4x \times x^2$$

h.
$$9x^2 + x^2$$

$$3x + 4y - 2x + y$$

a) 5xx3=5x3xx=15x

- 19 Dans chaque cas, réduire, si possible, l'expression proposée.
- p 147

a. $5x \times 3$

b. 2x - 12x

c. 2 + 4x

d. $3x^2 - 8x^2$

 $e. 5x \times 2x$

- -3 f. $4x \times x^2$
- $\mathbf{g} \cdot 5x^3 + 3x^2$

h. $9x^2 + x^2$

i. $2x \times 3y$

i. $2x \times 3y$ j. 3x + 4y - 2x + y = 1 + 5y = x + 5y = x + 5y

9) $5x^3 + 2x^2$ coor ce n'est pas en nûme poursonne (x^2 et x^3) $(x^2$ et x^3) $(x^2$ et x^3)

i) $2xx \times 3xy = 6x$ ocxy = 6xy

20 Parmi les expressions suivantes, indiquer lesquelles sont des sommes et lesquelles sont

p 147

des produits. $A = 4y - 8 \implies Sommes " B = 3z(4z - 6) \implies Produit$

 $C = (4a - 3)^2 = \text{Produit } D = 7b^2 + 5b + 2 = 5$

 $E = 4(t-3) + 5t \Rightarrow S$ $F = (3p+1)(5p-2) \Rightarrow Reduit.$

21 Développer les expressions suivantes.

A = 2(x + 8)

B = 3(x - 2)

C = -4(8 + 2x)

D = -3(x - 7)

E = -4x(3x - 2)

 $F = (5x - 1) \times x$

p 147

$$2xx+2x8=2x+16=A$$
 $2xx+2x8=2x+16=A$
 $3xx-3x2=3x-6=B$
 $C=-5x8+(-5)x2-7c=-37$

Page 31

22 Factoriser les expressions suivantes.

A = 2a + 2b B = 4c + 12 C = 2 - 6d $D = 5e^2 - 3e$ $E = 5x^2 - 5$ $F = f - 4f^2$ $G = x^3 - 3x^2$ $H = 9a^2 - 6a + 12$ p 147

$$A = 2(A+6)$$

 $B = 4c + 4x3 = 4x(c+3)$
 $C = 2 - 2x3d = 2x(1-3d)$
 $D = 5exe - 3xe = ex(5e-3)$

Page 33

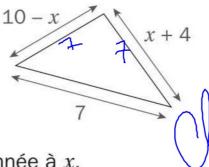
$$E = 5x^2 - 5 =$$
 $22 + 147 a \text{ Pinin.}$
 $027 + 147$

22 Factoriser les expressions suivantes.

$$A = 2a + 2b$$
 $B = 4c + 12$
 $C = 2 - 6d$ $D = 5e^2 - 3e$
 $E = 5x^2 - 5$ $F = f - 4f^2$
 $G = x^3 - 3x^2$ $H = 9a^2 - 6a + 12$

$$E = 5x^2 - 5 = 5 \times x^2 - 5 \times 1 = 5(x^2 - 1)$$

$$F = f - 4f^2 = \mathbf{f} \times 1 - 4 \times f \times \mathbf{f} = \mathbf{f}(1 - 4f)$$


$$G = x^3 - 3x^2 = x \times \underbrace{x \times x}_{x^2} - 3 \times \underbrace{x \times x}_{x^2} = x^2(x - 3)$$

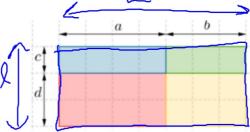
$$H = 9a^2 - 6a + 12 = \frac{3}{3} \times 3a^2 - \frac{3}{3} \times 2a + \frac{3}{3} \times 4 = \frac{3}{3}(3a^2 - 2a + 4)$$

Page 35

- x est un nombre compris entre -0.5 et 6.5.
- a. Démontrer que le périmètre du triangle ci-contre est toujours le même,

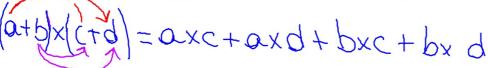
est toujours le même, quelle que soit la valeur donnée à x.

p 147


b. Que peut-on dire de ce triangle lorsque x = 3?

b)dorsque x=3 le terangle est équilateral 10-3=7;4+3=7

Activité 4 : Double distributivité


1. Conjecture

Le quadrilatère ABCD ci-dessous est un rectangle. a, b, c et d sont des nombres positifs.

a. Exprimer l'aire du rectangle de deux façons différentes : sous forme de somme et sous forme de produit

Grand rectangle = Bleu + Rouge + Jaune + Ver

Page 37

b. En déduire le développement du produit $(a + b) \times (c + d)$.

BILAN 3 : Double distributivité :

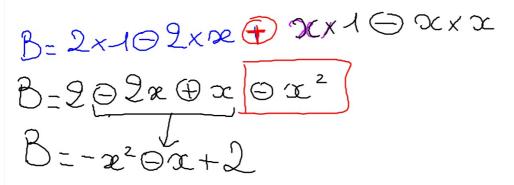
 $(a \oplus b) \times (c + d) = \bigcirc \times C + \bigcirc \times d \oplus b \times C + b \times d$

2. Applications

a. Développer les produits suivants, puis réduire l'expression obtenue.

$$B = (2 + 3x)(1 + x)$$

$$C = (2 + 3x)(2 + x)$$


$$C = (2 - 2x)(1 + 2x)$$

$$D = (2 - 2x)(1 - 2x)$$

$$E = (2x + 1)(1 + x)$$

$$E = (2x + 3)(1 + 3x)$$

$$E = (-2x - 3)(1 + 3x)$$

Page 39

2. Applications

a. Développer les produits suivants, puis réduire l'expression obtenue.

$$B = (2+x)(1-x)\sqrt{C} = (2-x)(1+x) \qquad D = (2-x)(1-x)$$

$$E = (2x+3)(1+3x) \qquad F = (-2x-3)(1+3x)$$

$$C = 2\sqrt{1+2x}c - 2c\sqrt{1-2x}c$$

$$C = 2\sqrt{1+2x}c - 2c\sqrt{1-2x}c$$

$$C = 2\sqrt{1+2x}c - 2c\sqrt{1-2x}c$$

2. Applications

a. Développer les produits suivants, puis réduire l'expression obtenue.

B = (2+x)(1-x) C = (2-x)(1+x) D = (2-x)(1-x)

$$E = (2x + 3)(1 + 3x)$$

$$F = (-2x - 3)(1 + 3x)$$

$$D = 2 \times 1 - 2 \times 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

$$D = 2 - 2 \times 1 - 2 \times (x)$$

Page 41

2. Applications

a. Développer les produits suivants, puis réduire l'expression obtenue.

B = (2+x)(1-x) C = (2-x)(1+x) D = (2-x)(1-x)

$$F = \left(-\frac{20(-3)(3+3)x}{2}\right)$$

$$F = -\frac{1}{2}x \times 1 + (-\frac{1}{2}x) \times 3x - \frac{3}{2}x \times 1 + (-\frac{3}{2}x) \times 3x$$

$$F = -\frac{1}{2}x + (-6x) - \frac{3}{2} + (-9x)$$

$$F = -\frac{1}{2}x + (-6x) - \frac{3}{2}x - \frac{1}{2}x - \frac{1}{$$

Page 43

24 Développer.

a. $(x + 2)^2$

b. $(x-5)^2$

c. $(2x + 3)^2$

d. (2x-5)(2x+5)

p 147

$$A - (3c+2)(x+1)$$

$$= xx3c+3xx2+2x3c+2x2$$

$$= 3c^{2}+2x+2x+4$$

$$= x^{2}+4x+4$$

$$B = (x-5)^{2} = (x-5)(x-5)$$

$$= xxx+xx(-5)-5xx-5x(-5)$$

$$= x^{2}-5x-5x+25=x^{2}-10x+25$$

24 Développer.

a. $(x + 2)^2$

b. $(x-5)^2$

c. $(2x + 3)^2$

d. (2x-5)(2x+5)

$$C = (20c+3)(2x+3)$$

$$C = 42C^2 + 6x + 6x + 9$$

 $C = 4x^2 + 12x + 9$

Page 45

24 Développer.

a. $(x + 2)^2$

b. $(x-5)^2$

c. $(2x + 3)^2$

d. (2x-5)(2x+5)

p 147

p 147

D=(2x-5)(2x+5) =2xx2x+2xx5+(-5)x2x+(-5)x5 $-4x^2+10x+(-10x)+(-25)$ $-4x^2-10x-10x-25$ $-4x^2-25$

CALCUL LITTERAL (suite leçon)

3) Double distributivité

Propriété: a, b, c et d désignent des nombres relatifs. $(a+b)\times(c+d) = a\times c + a\times d + b\times c + b\times d$ fact.

4) Développer, factoriser, réduire

Définitions :

<u>Développer</u> une expression littérale, c'est transformer dun produit (((X)) en Somme((1))

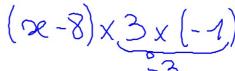
Factoriser une expression littérale, c'est transformer une sonne (0) au

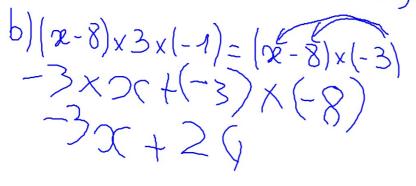
différence (=) en produit (8).

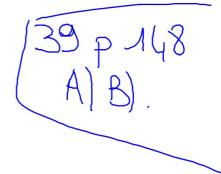
• Réduire une expression littérale, c'est la simplifier : on calcule tout
Ce que l'on sout calculer, on enlève le signe x " ou res parenthèses quand c'est possible.

Page 47

p 148 Programme de calcul


- Choisir un nombre.
- Soustraire 8 à ce nombre.
- Calculer le triple du résultat.
- Prendre l'opposé du nombre obtenu.


On choisit x comme nombre de départ.


Écrire le nombre obtenu en fin de programme en

fonction de x:

- a. sous forme factorisée
- b. sous forme développée.

(02-8)x3x(-

Exemples:

Développer A = 2x(8x - 4)

A=
$$2x\times8x+2x\times64$$
)
 $[=16x^2-8x]$ reduction.

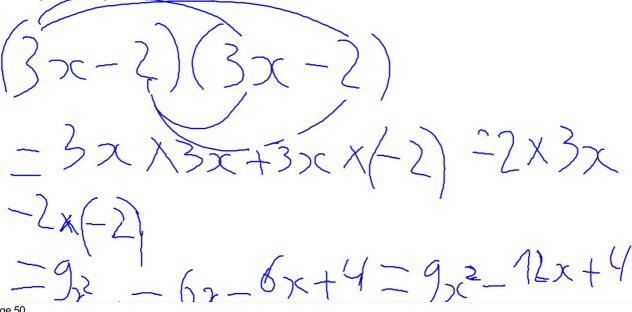
Factoriser $B = 4.2x - 1.3x^2$

Réduire
$$C = 3 + 2x \times 7 - 4x$$

$$C = 3 + 14 + 2x \times 7 - 4x$$

$$C = 10x + 3$$

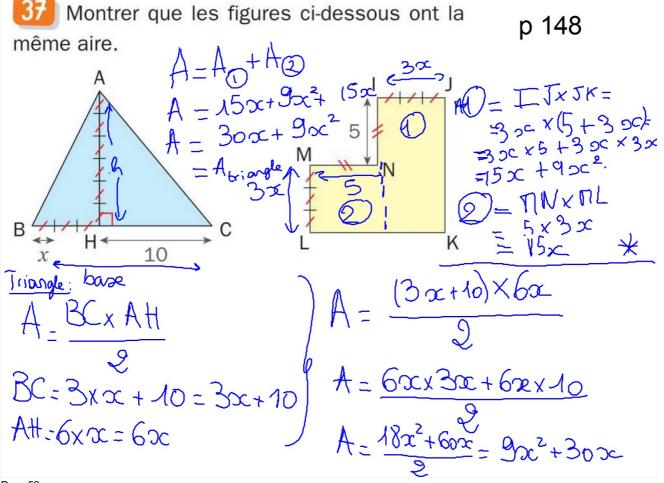
Page 49


Développer et réduire les expressions p 148 ci-dessous.

$$A = (3x - 2)^2$$
 $B = (5x - 3)^2 + (4 - 9x^2)$

$$C = (7 + 4x)^2$$
 $D = (5x + 3)(5x - 3)$

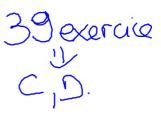
$$E = (8x + 1)(8x - 1) - (2x + 7)^2$$

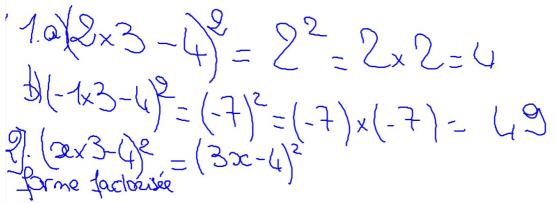

$$F = (4x - 5)^2 - (8x + 2)^2$$

Développer et réduire les expressions ci-dessous.

$$A = (3x - 2)^2$$
 $B = (5x - 3)^2 + (4 - 9x^2)$ $C = (7 + 4x)^2$ $D = (5x + 3)(5x - 3)$ $E = (8x + 1)(8x - 1) - (2x + 7)^2$ $F = (4x - 5)^2 - (8x + 2)^2$ $(5x - 3) + (4 - 9x^2)$ $(5x - 3) + (4 -$

Page 51




Page 52

41 Programme de calcul

p 148

- Choisir un nombre. \longrightarrow 2
- Le multiplier par 3. $> 2 \times 3$
- Soustraire 4 -- 12 x 3 4
- Calculer le carré du résultat précédent. $\sim (2x3-4)^2$
- 1. Quel résultat obtient-on en choisissant :
- a. le nombre 2 ?
- b. le nombre -1?
- **2.** On appelle x le nombre de départ. Exprimer en fonction de x le résultat final sous forme factorisée, puis sous forme développée.

Page 53

 $(3\pi + 4)^{2} = (3x + 4) \times (3\pi + 4)$ = $3\pi \times 3x + 3\pi \times 4 + 4 \times 3x + 4 \times 4$ = $9\pi^{2} + 12x + 12x + 16$ = $9\pi^{2} + 24x + 16$ forme développée

Page 55

Développer et réduire les expressions p 148 ci-dessous. $A = (3x - 2)^2 \qquad B = (5x - 3)^2 + (4 - 9x^2)$

 $3\lambda 5x+3x5x+3\chi(-3)$

 $C = (7 + 4x)^2$ D = (5x + 3)(5x - 3)

 $C = (7 + 4x)^2 \qquad D = (5x + 3)(5x - 3)^2$

 $E = (8x + 1)(8x - 1) - (2x + 7)^{2}$ $F = (4x - 5)^{2} - (8x + 2)^{2}$

D=25x2+(-15x)+15x+(-9)

D= 25 x - 9

III) Egalité de deux expressions littérales

Propriété: Deux expressions littérales sont égales si elle sont équipers C'està dire si elles sont égales quelque soit valeurs attribuées oux lettres.

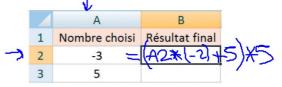
Remarque: Pour montrer que deux expressions littérales sont égales, on peut les développer, les réduire et vérifier que l'on obtient bien la même expression.

Conséquence: Il suffit de trouver un seul exemple pour lequel deux expressions donnent des résultats différents pour prouver que Ces deux expressions ne sont has egales.

Page 57

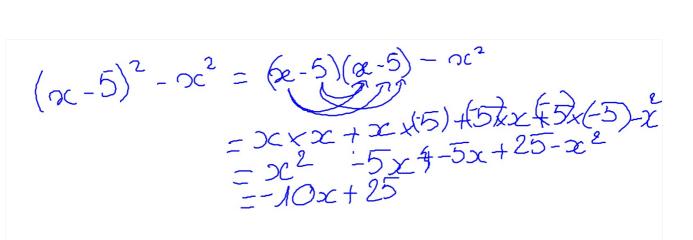
77 Voici un programme de calcul.

- Choisir un nombre. 🍑


- Multiplier ce nombre par (-2). - Ajouter 5.

- Multiplier le résultat par 5

1. a. Vérifier qu'on obtient 5 lorsque le nombre de départ est 2.


b. Lorsque le nombre de départ est 3, quel résultat obtient-on ?

2. TICE Pour calculer plus rapidement les résultats obtenus, on utilise le tableur ci-dessous.

Que faut-il saisir dans la cellule B2?

3 Joseph prétend que l'expression $(x-5)^2 - x^2$ permet d'obtenir le résultat du programme de calcul. A-t-il raison? p 153

Page 59

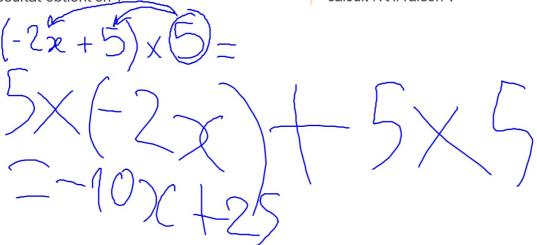
77) 🞹 Voici un programme de calcul.

- Choisir un nombre. 🎾

- Multiplier ce nombre par (-2). - Ajouter 5.

- Multiplier le résultat par 5.

1. a. Vérifier qu'on obtient 5 lorsque le nombre de départ est 2.


b. Lorsque le nombre de départ est 3, quel résultat obtient-on ?

2. TICE Pour calculer plus rapidement les résultats obtenus, on utilise le tableur ci-dessous.

	Α	В
1	Nombre choisi	Résultat final
2	-3	
3	5	

Que faut-il saisir dans la cellule B2?

3. Joseph prétend que l'expression $(x-5)^2 - x^2$ permet d'obtenir le résultat du programme de calcul. A-t-il raison?

